A Novel Photodeposition Method in the Presence of Nitrate Ions for Loading of an Iridium Oxide Cocatalyst for Water Splitting

Akihide Iwase,[†] Hideki Kato,[†] and Akihiko Kudo^{*†,††}

[†]Department of Applied Chemistry, Faculty of Science, Science University of Tokyo, 1-3 Kagurazaka, Shinjyuku-ku, Tokyo 162-8601 $\phi^{\dagger\dagger}$ Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (CREST, JST)

(Received April 13, 2005; CL-050497)

IrO² cocatalysts for water splitting were photodeposited from aqueous solution of $(NH_4)_2[IrCl_6]$ or $Na_3[IrCl_6]$ in the presence of nitrate ions on La-doped NaTaO₃ (denoted as NaTaO3:La) photocatalysts, while metallic iridium particles were deposited in the absence of nitrate ions. The $IrO₂$ -loaded $NaTaO₃: La showed the activity for water splitting 2.5 times$ higher than the nonloaded NaTaO_3 : La. In contrast, the steady activity was not obtained for the metallic iridium-loaded photocatalyst, because the back reaction quickly proceeded.

Photocatalytic water splitting into H_2 and O_2 is an attractive reaction from the viewpoint of the solution of energy and environmental issues. It has been reported that many oxide photocatalysts show reasonable activities for water splitting into H_2 and O_2 in a stoichiometric ratio under UV irradiation.^{1–3} Most photocatalysts require loading of cocatalysts in order to obtain high activities. Pt,⁴ Rh,^{5,6} NiO,⁷ and RuO₂^{3,8} cocatalysts that assist H² evolution are often employed for overall water splitting. It has been reported by Inoue that an $IrO₂$ cocatalyst loaded by an impregnation method is also effective for water splitting as well as $RuO₂$.⁹ In contrast, the cocatalyst for $O₂$ evolution using a powdered photocatalyst is limited. Hara and Mallouk reported that a colloidal IrO₂ cocatalyst works as an active site for O_2 evolution.10–12 However, the loading procedure of the colloidal $IrO₂$ is somewhat complicated. In addition, there are no reports on the $O₂$ -evolution cocatalyst which improves the photocatalytic activity for overall water splitting. In the present paper, we report a novel photodeposition method of iridium-based cocatalysts which are effective for water splitting on a La-doped NaTaO₃ photocatalyst.

NaTaO₃ powder doped with $2 \text{ mol } \%$ of La was prepared by a solid-state reaction according to the previous report.¹³ Photocatalytic reactions were carried out in a gas-closed circulation system. For the photocatalytic decomposition of water, an inner irradiation reaction cell made of quartz was used. The $NaTaO₃: La powder (1.0 g) was dispersed in a reactant solution$ (350 mL) containing a certain amount of iridium species, $(NH_4)_2$ [IrCl₆] (Wako Pure Chemical) and Na₃[IrCl₆] (Wako Pure Chemical). NaNO₃ (Kanto chemical; 99%) was added into the solution, if necessary. The suspension was irradiated using a 400 W high-pressure mercury lamp (SEN; HL400EH-5). Photodeposition of an iridium-based cocatalyst was carried out in situ at the beginning stage of photocatalytic reactions. $NaTaO₃: La$ powder loaded with a cocatalyst in the aqueous $NaNO₃$ solution was washed and collected by a centrifugal method when it was employed for photocatalytic reactions in the absence of NaNO₃. Half reactions of H_2 and O_2 evolution were also tested in aqueous methanol and silver nitrate solutions, respectively. The reaction cell with a top window made of quartz and a light source of

a 300 W Xe lamp (ILC-technology, CERMAX-LX-300BUV) were used for these sacrificial reactions. The amounts of evolved H_2 and O_2 were determined using gas chromatography (Shimadzu, GC-8A). Diffuse reflection spectra were obtained using a UV–vis–NIR spectrometer (JASCO, Ubest-570) and were converted from reflection to absorbance by the Kubelka– Munk method.

Figure 1 shows overall water splitting on iridium-loaded $NaTaO₃: La which was prepared by photodeposition in pure$ water without nitrate ions (denoted as $Ir(water)$ -NaTaO₃:La). The water splitting reaction stopped immediately although the photocatalytic activity of Ir(water)-NaTaO3:La $(H_2: 1210)$ μ mol h⁻¹, O₂: 484 μ mol h⁻¹) was 3 times higher than that of native NaTaO₃:La (H₂: 404 µmol h⁻¹, O₂: 187 µmol h⁻¹) at the beginning stage. In addition, evolved H_2 and O_2 decreased

Figure 1. Photocatalytic water splitting into H_2 and O_2 over Ir(water)-NaTaO₃:La; closed circle: H₂, open circle: O₂. Catalyst: 1.0 g, pure water: 350 mL, a 400 W high-pressure Hg lamp, an inner irradiation cell made of quartz.

Figure 2. Photocatalytic water splitting over Ir(nitrate)- $NaTaO_3: La$ in 5 mmol L^{-1} NaNO₃ (1st run) and pure water (2nd and 3rd runs); closed circle: H_2 , open circle: O_2 . Catalyst: 1.0 g, reactant solutions: 350 mL, a 400 W high-pressure Hg lamp, an inner irradiation cell made of quartz.

at the ratio of 2:1 in the dark. XPS measurements revealed that metallic iridium existed on Ir(water)-NaTaO₃:La. The back reaction was not observed for native $NaTaO_3$: La. Therefore, the deactivation was due to the back reaction on the metallic iridium cocatalyst photodeposited in pure water. Figure 2 shows overall water splitting on iridium-loaded NaTaO3:La which was prepared by photodeposition in the presence of nitrate ions (denoted as Ir(nitrate)-NaTaO₃:La). Water splitting steadily proceeded on Ir(nitrate)-NaTaO₃:La. In the 1st run in the presence of nitrate ions, the rate of H_2 evolution was 2.5 times higher than that of native NaTaO_3 : La even if the reduction of nitrate ions competed with that of water judging from the evolution of an excess amount of $O₂$. When the reactant solution was changed to pure water (2nd and 3rd runs), the ratio of evolved H_2 and O_2 became two. The rate of H_2 evolution on Ir(nitrate)-NaTaO₃: La in pure water was higher than that in the aqueous nitrate solution. No back reaction was observed for Ir(nitrate)-NaTaO₃:La in the dark. Thus, the property of Ir(nitrate)-NaTaO3: La was quite different from that of Ir(water)-NaTaO₃:La. These results indicate that the nitrate ions were necessary when the iridium cocatalysts which assisted steady water splitting were photodeposited on NaTaO₃:La. In the case of 2nd and 3rd runs, the total amount of $H₂$ evolved from pure water was 7.6 mmol. The turnover numbers of the reacted electrons/holes to the amount of NaTaO_3 : La and Ir were 4 and 600, respectively. It indicates that the water splitting proceeded photocatalytically.

Figure 3 shows diffuse reflection and absorption spectra of Ir(water)-NaTaO₃:La, Ir(nitrate)-NaTaO₃:La, and colloidal IrO₂. Ir(nitrate)-NaTaO₃:La gave the characteristic absorption band around 600 nm as well as the $IrO₂$ colloids whereas Ir(water)-NaTaO₃: La did not. The similarity indicates that the iridium species photodeposited in the presence of nitrate ions was colloidlike IrO₂. Therefore, the Ir(nitrate)-NaTaO₃:La photocatalyst can be denoted as IrO_2 -NaTaO₃:La. Although we tried to load $NaTaO_3: La$ with IrO_2 by an impregnation method, it was not effective. Thus, the present aqueous process was superior to the conventional impregnation method, at least for the $NaTaO₃$: La photocatalyst. Hara et al. have reported that the colloidal IrO₂-loaded photocatalysts are active for O_2 evolution.¹¹ According to their report, the colloidal $IrO₂$ is prepared by the pH -controlled hydrolysis, and colloidal $IrO₂$ is adsorbed on a photocatalyst. In contrast to it, the simple photodeposition method by an aqueous process, which gave good performance for water splitting, was developed in the present study.

Figure 3. Diffuse reflection spectra of (a) Ir(water)-NaTaO₃:La and (b) Ir(nitrate)-NaTaO₃:La, and absorption spectrum of (c) colloidal $IrO₂$.

Table 1. Photocatalytic activities of $IrO₂$ -NaTaO₃:La for H₂ and $O₂$ evolution from aqueous solutions containing sacrificial reagents

Photocatalyst	Activity/ μ mol h ⁻¹	
	H_2^a	O_2^b
$NaTaO_3:La$	191	44
IrO ₂ $(0.26 \text{ wt\%})/\text{NaTaO}_3$:La	37	76

300 W Xe lamp, a top window cell made of quartz. ^aCatalyst: 0.3 g, 10 vol % CH3OH (aq) 150 mL. ^bCatalyst: 0.5 g, 0.05 mol L^{-1} AgNO₃ (aq) 150 mL.

Table 1 shows the activities of IrO_2 -NaTa O_3 :La for H_2 and O² evolution from aqueous solutions containing sacrificial reagents. The IrO_2 -loaded NaTa O_3 :La photocatalysts were prepared by photodeposition in the presence of nitrate ions and washed by a centrifugal method before use. The activity of NaTaO₃:La for O_2 evolution was increased by 1.5 times by loading of the IrO₂ cocatalyst, while the activity for H_2 evolution was decreased. It is considered that the low activity for H_2 evolution is due to the charge recombination facilitated by partly reduced $IrO₂$ in the presence of CH₃OH as a hole scavenger. These results indicated that the present $IrO₂$ cocatalyst assisted $O₂$ evolution as well as the IrO₂ colloid previously reported.^{10–12} It is considered that the $IrO₂$ cocatalyst plays important roles for the formation of active sites for O_2 evolution and the suppression of the charge recombination. It results in the improvement for overall water splitting.

In conclusion, the $IrO₂$ cocatalyst that was effective for overall water splitting was loaded on a La-doped NaTaO_3 photocatalyst by a simple photodeposition method from an aqueous solution of $(NH_4)_2$ [IrCl₆] or Na₃[IrCl₆] in the presence of nitrate ions. It is noteworthy that photocatalytic water splitting was enhanced by loading of a cocatalyst not for H_2 evolution but for O_2 evolution.

This work was supported by Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology (JST) Agency, a Grant-in-Aid (No. 14050090) for the Priority Area Research (No. 417) from the Ministry of Education, Culture, Science, and Technology.

References

- K. Domen, J. N. Kondo, M. Hara, and T. Takata, Bull. Chem. Soc. Jpn., 73, 1307 (2000), and reference therein.
- 2 A. Kudo, H. Kato, and I. Tsuji, *Chem. Lett.*, 33, 1534 (2004), and reference therein.
- 3 J. Sato, N. Saito, H. Nishiyama, and Y. Inoue, J. Phys. Chem. B, 107, 7965 (2003).
- 4 S. Sato and J. M. White, J. Catal, 69, 128 (1981).
- 5 J.-M. Lehn, J.-P. Sauvage, and R. Ziessel, Nouv. J. Chim., 4, 623 (1980).
- 6 K. Yamaguchi and S. Sato, J. Chem. Soc., Faraday Trans., 81, 1237 (1985).
- 7 K. Domen, S. Naito, S. Soma, M. Onishi, and K. Tamaru, J. Chem. Soc., Chem. Commun., 1980, 543.
- 8 T. Kawai and T. Sakata, Chem. Phys. Lett., 72, 87 (1980).
9 Y Inoue K. Asai and K. Sato, J. Chem. Soc. Faraday Tra
- Y. Inoue, K. Asai, and K. Sato, J. Chem. Soc., Faraday Trans., 90, 797 (1994).
- 10 M. Hara, C. C. Waraksa, J. T. Lean, B. A. Lewis, and T. E. Mallouk, J. Phys. Chem. A, 104, 5275 (2000).
- 11 A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, and K. Domen, J. Am. Chem. Soc., 124, 13547 (2002).
- 12 N. D. Morris and T. E. Mallouk, J. Am. Chem. Soc., 124, 11114 (2002).
- 13 H. Kato, K. Asakura, and A. Kudo, J. Am. Chem. Soc., 125, 3082 (2003).